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A second-order numerical method of characteristics based on a bicharacteristics scheme 
was developed for the evaluation of steady, supersonic, nonequilibrium, chemically 
reacting flows. The absolute accuracy and order of accuracy of the method was shown 
by comparisons with spherical source flow and axisymmetric, nonequilibrium flows. 
Numerical results were obtained for elliptical and super-elliptical nozzles. These results 
illustrate the complex nature of three-dimensional flows and the inadequacy of quasi- 
three-dimensional methods which neglect cross flows. 

I. INTRODUCTION 

The purpose of this study was to develop a method of solving flow fields in three- 
dimensional, exhaust nozzles accounting for nonequilibrium, chemical reactions. 
This research is an extension of that carried out by Ransom [l], and is documented 
in [2]. The consideration of chemical nonequilibrium is required for an accurate 
prediction of nozzle performance (i.e., specific impulse) for many propulsion 
systems, since the predicted performance may differ between frozen and equilibrium 
flows by as much as 10 to 15 % for extreme cases. The nozzles of interest here are 
the propulsive nozzles of rockets, ramjets, and scramjets. These nozzles can be 
completely three-dimensional, so that two-dimensional and axisymmetric methods 
are not applicable. This study was concerned primarily with the supersonic portion 
of the nozzles where the flow was assumed to be steady. Although the resulting 
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program was written specifically for chemical models of interest in propulsive 
nozzles, the numerical techniques can be applied in a straightforward manner to 
more general chemical models. 

The equations of motion for steady, supersonic flow of an inviscid fluid are a 
system of quasilinear, first-order, hyperbolic, partial differential equations. In 
general, an analytical solution to these equations cannot be found and, therefore, 
one is naturally led to using numerical methods to obtain a solution. The numerical 
schemes available can be divided into three main categories: 

(1) integral relations schemes, 
(2) fixed grid finite difference schemes, and 

(3) characteristic finite difference schemes (method of characteristics). 

The first scheme has been used successfully in two independent variable flows, but 
its extension to three independent variable, nonequilibrium flows is not straight- 
forward. Therefore, this scheme was not considered further. The second scheme 
replaces the derivatives in the original system of equations with finite differences, 
and then solves this system of difference equations. The third scheme first writes 
the original system of equations in characteristic form, and then uses finite 
differences to replace the derivatives. This system of difference equations is then 
solved in the same manner as in the second method. The standard finite difference 
methods can be further subdivided into methods without artificial viscosity and 
methods using an artificial viscosity term in the difference equations. Characteristic 
schemes can be further subdivided into reference plane schemes and bicharacteristic 
schemes. Extensive discussions of the advantages and disadvantages of these 
methods are given by Sauerwein [3] and Strom [4]. Briefly summarizing the results 
of these studies, the standard finite difference methods are conceptually simpler, 
easier to program, require less machine storage, and obtain the solution on an 
evenly spaced and more versatile grid, while the characteristic methods are, in 
general, more accurate due to the more rigorous treatment of the physics of the 
problem. Since the objective of this study was to develop an accurate, production 
type computer program, a characteristic finite difference scheme was employed. 

A large amount of literature has been published concerning one- and two- 
dimensional, equilibrium and frozen, steady flows. A moderate amount of 
literature exists relating to one- and two-dimensional, steady, nonequilibrium 
flows. Two major problems encountered in computing nonequilibrium, chemically 
reacting flows are the large machine storage requirements and long computing times 
due to the large number of equations and thermochemical data involved. Some 
of the excessive computational time is also due to the numerical “stiRtress” of the 
species continuity equations. 

For three-dimensional flows, a moderate quantity of literature exists concerning 
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characteristic methods. Extensive reviews have been given by Ransom [l], 
Sauerwein [3], Strom [4], Fowell [5], and Chushkin [6]. Most of these studies were 
concerned with isentropic flows. Only a limited amount of effort has been 
devoted to nonequilibrium flows, and no general computer programs have been 
developed. Theoretical developments were given by Sauerwein [3], Strom [4], 
and Chushkin [6], while actual calculations, due to machine limitations, were 
carried out for equilibrium flows only. Characteristic schemes for three independent 
variable flows can generally be classified as reference plane methods or bicharac- 
teristic methods. In reference plane methods the original system of partial 
differential equations in three independent variables is reduced to a system of 
partial differential equations in two independent variables by means of approxi- 
mations of the derivatives with respect to the third independent variable. These 
approximations to the derivatives are then treated as source or forcing terms and 
the resulting system of equations is solved in planes using a two-dimensional 
characteristic scheme. Reference plane methods have been proposed by several 
investigators, notably Moretti [7], Katskova and Chushkin [8], and Rakich [9]. 
Reference plane methods have also been called the method of bycharacteristics [7], 
and the method of semicharacteristics [8]. In the bicharacteristic methods, the 
actual compatibility equations for three-dimensional flow are solved along bicharac- 
teristics, i.e., generators of the Mach conoid, and streamlines. Bicharacteristic 
methods have been proposed by Sauerwein [3], Strom [4], Fowell [5], Butler [IO], 
and Thornhill [ 111. 

Although reference plane methods are the simpler of the two methods, the 
domain of dependence is not rigorously considered and, therefore, these methods 
have questionable accuracy for highly three-dimensional flows. While bicharac- 
teristic methods rigorously consider the domain of dependence, they require 
calculation of the cross derivatives in the compatibility equations, i.e., ditferen- 
tiation in a characteristic surface and normal to the bicharacteristic direction. 
Therefore, these methods are more complicated. While both methods have merit, 
the authors feel that the bicharacteristic method is potentially the more accurate, 
and thus employ that technique in the present study. The formal order of accuracy 
and computational efficiency of a scheme are the more important measures of 
excellence. These factors are investigated for the present scheme by acutal numerical 
computations. 

II. GAS DYNAMIC MODEL 

The governing equations for the nonequilibrium, chemically reacting flow of a 
gas in instantaneous translational, rotational and vibrational equilibrium in the 
absence of body forces and electronic excitation are 
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P% + PO% + pwu, + pr = 0, 

PW + P% + pwv, + py = 0, 

PUWE + pvwr + pww, + p* = 0 

PUX + PV, + pw, + up, + up, + wp, = 0, 

UP2 + VP, + WP, - a2(up, + vp, + wpJ - y = 0, 

PU% + pv%l + pwciz - CTi = 0 (i = I,..., n), 

12 
p = pT 1 ciRi = pRT, 

i=l 

h = i Cih< 3 
i=l 

hi = j cgi dT + hi0 (i = l,..., n). 
TO 

(0 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

The term Yin Eq. (5) is interpreted as an energy source (i.e., energy/volume-time) 
due to chemical reactions and is given by 

Y = i [yRiT - (y - 1) h,] ui . 
i-l 

(10) 

A complete discussion of the chemical kinetics model is given in [2]. A brief 
summary is presented here. The analysis considers a system of thermally perfect 
gases composed of the following six elements: carbon, hydrogen, oxygen, nitrogen, 
flourine, and chlorine. Gold and Weekley [12] showed that 19 chemical species and 
48 chemical reactions (13 dissociation-recombination reactions and 35 binary 
exchange reactions) are sufficient to evaluate the nonequilibrium, chemically 
reacting flow of systems formed from the above six elements. The generalized 
chemical reaction is given by 

The reverse reaction rates are calculated from 

k = a .~-“j~-%l=~ 9.3 13 (j = l,..., m), 

(11) 

(12) 
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where aij , nj , and bj must be determined experimentally or estimated analytically. 
The forward reaction rates are calculated from 

kfj = k,jKj (j = l,..., m), (13) 

The species chemical source function is given by 

(Ti = W#’ 2 (VTj - Vi*) Xj 3 
kl 

where, for binary exchange reactions 

and for dissociation-recombination reactions 

The third body efficiency factor is defined as 

A4j= i mijCi 
i=l 

where mij is the relative efficiency of species i as a third body in reaction j. 

(14) 

(16) 

(17) 

III. CmucmRisnc RELATIONS 

Equations (1) through (6) are a system of first-order, quasilinear, hyperbolic, 
partial differential equations in three independent variables. Two families of charac- 
teristic surfaces exist for three-dimensional, steady, inviscid flows. One family of 
characteristic surfaces are the stream surfaces given by 

where #(x, y, z) = 0 represents the characteristic surface. The envelope of all 
stream surfaces through a point forms a single pencil of planes whose axis is a 
streamline, which is given by 

dx/dt = u, dy/dt = v, dzldt = w, 

where t is a parameter proportional to length along the streamline. 

(1% 
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The second family of characteristic surfaces are the Mach or wave surfaces given 
by 

u$, + v#, + w$z = a cw 

The envelope of all wave surfaces through a point forms a conoid called the Mach 
or characteristic conoid which is given by 

[u” - (92 - d)](dx/ds)2 + [v” - (q2 - a2)](dy/ds)2 

+ [w” - (42 - a2)](dz/h)2 + 2uv(dx/ds)(dy/ds) 

+ 2uw(dx/ds)(dz/ds) + 2vw(dy/ds)(dz/ds) = 0, (21) 

where q is the velocity magnitude and s is a parameter proportional to length 
along the curves which generate the Mach conoid. These generators or rays of 
the Mach conoid, which are the lines of tangency between the Mach surfaces 
and Mach conoid, are called bicharacteristics. 

The compatibility equations which apply on stream surfaces are 

pu(uu, + vu, + wu,) + pu(wz + vu.‘, + WV,) 
+ pwtuw, + VW, + ww,) + (UP. + upf/ + WPZ) = 0 

p&(wl! + vu, + w) + p&&42 + vu, + WV,) 
+ Pu% + VW, + ww,) + &Pz + S,P, + SP,) = 0, 

UP, + q+l + WP, - a2(qb + VP, + wpz) = ‘I/ 

pucia: + pvci, + pwciz = ui (i = 1 ,*-*, n), 

where (A’,, S, , S,) is some vector independent of the velocity vector. 
The compatibility equation which applies on wave surfaces is 

(22) 

(23) 

(24) 

(25) 

pmtuu, + vu, + wu,) + pun,(uv, + vu, + ~4) 
+ pwtuw, + uw, + ww,) + (an, - 24) pa: + (an, - v) psr 

+(an,--w)p,--~~(u,+u,+w,)+Y=O (26) 

where (no , n, , n,) is the unit normal to the wave surfaces. Writing Eq. (26) in a form 
which contains differentiation in the bicharacteristic direction, or, in other words, 
tangent to a ray of the Mach conoid, yields 

puw4 + pan,4 + pawe - Pt 
+ ~u~[(n,~ - 1) u, + (n,” - 1) u, 
+tn,“- l)wz+(ug+vJwFnll 
+ (u, + w3 w, + (0, + w3 n,n,l + Y = 0 (27) 
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where the subscript t denotes partial differentiation with respect to t, a parameter 
proportional to length along the bicharacteristic curves. The term in brackets in 
Eq. (27) contains derivatives which are in the wave surfaces, but which are normal 
to the bicharacteristic direction, and will hereafter be called the cross derivatives. 

Equations (23) and (27) depend on the particular stream or wave surface, 
respectively, while Eqs. (22), (24), and (25) are the same for all stream surfaces. 
Since there exists a doubly infinite number of stream and wave surfaces at a point, 
there exists a doubly infinite number of compatibility equations. Since the number 
of independent compatibility relations cannot exceed the number of independent 
equations of motion, it is necessary to determine which of the possible combinations 
of 5 + n compatibility relations are independent. Rusanov [13] determined the 
possible combinations for steady, three-dimensional, isentropic flow. Rusanov’s 
results can be extended to include nonequilibrium, chemically reacting flow, since 
the proof is a geometric one in the space of characteristic normals. One of the many 
possible independent sets of equations consists of Eqs. (22), (24), and (25) along 
the flow streamlines given by Eq. (19), and Eq. (27) along three wave characteristic 
surfaces given by Eq. (21). This set of compatibility relations is the one used in this 
study. 

IV. SECOND-ORDER CHARACTERISTIC SCHEME 

Numerous numerical schemes based on the above characteristic system are 
possible. Three such schemes were investigated by Cline and Hoffman [14]. Based 
on the results of that study, the scheme proposed by Butler [IO] was employed in 
the present investigation. 

Butler’s scheme obtains its second-order accuracy by forming a combination 
of the finite difference forms of the governing equations such that the cross- 
derivatives at the solution point are eliminated. This method is not a redundancy 
method, such as proposed by Strom [4], in which two sets of three bicharacteristics 
are used to compute two solutions which are then averaged. 

In the mathematical developments of this section and the next (IV and V), the 
velocity components U, U, and w are denoted by ui (i = 1,2, 3), and the summation 
convention for repeated subscripts is employed. 

Butler introduced the following bicharacteristic parameterization 

dxi = (ui + cai cos 0 + c/Ii sin 8) dt (i= 1,2,3), W-9 

where dxi are rays of a bicharacteristic, t is a parameter specifying the length of a 
ray, 0 is a parametric angle defining a particular bicharacteristic, ai and fli are unit 
vectors such that ui/q, ai , and fli form an orthonormal set, and c is defined by 

c = [qW/(q2 - u2)]‘/2. (2% 



8 CLINE AND HOFFMAN 

This parameterization is illustrated in Fig. 1. The ai and /$ are arbitrarily fixed 
at the solution point, i.e., point (6) in Fig. 1. In order for the Bnite difference form 
of Eq. (28) to be second-order, Butler utilized a “tangency condition” to determine 
the variation of 8 along the bicharacteristics. Ransom [l] held f3 constant along the 
bicharacteristics and used the “tangency condition” to determine the variation of 
(Y~ and fii along the bicharacteristic. Butler [15] later realized that it is not necessary 
to satisfy the “tangency condition” in order to ensure second-order accuracy of 
the overall scheme. Therefore, cy( , pi , and ~9 are arbitrarily tied at the solution 
point and remain constant along the bicharacteristics. The second-order accuracy 
of the resulting scheme has been verified numerically for both equilibrium and 
nonequilibrium flows. 

In terms of this parameterization, Eq. (27) becomes 

dip + PC& cos 6 + jt?( sin 6) dpi 

= $bj - pc2(ai sin e - & cos O)(aj sin e - pj cos e)(auipxj), (30) 

where dl denotes the derivative in the direction 1, which represents the bicharac- 
teristic direction corresponding to a particular value of 8. Butler also developed 
a “noncharacteristic relation,” which for the present case is given by 

where $ denotes the derivative in the streamline direction. 
Equation (30), written for 0 = 0, n/2, rr, and 3rr/2, yields four equations, 

denoted by (30-l), (30-2), (30-3), and (30-4). These four equations, along with 
Eq. (31), form a system of five equations. Rusanov (13) showed that a maximum of 
three wave surface compatibility equations are independent at a point; therefore, 
a maximum of three equations of this system of five equations are independent. 

Equations (30) and (3 1) can be written in finite difference form using a technique 
that is analogous to the modified Euler method for ordinary differential equations. 

HARACTERISTICS 

CHARACTERISTICS 

(8 = 3w/2,0) 

FIG. 1. Interior point computational scheme. 
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To obtain the finite difference form, the derivatives are replaced by simple 
differences and the coefficients are replaced by values which are an average of the 
values at the initial-value points (points (l)-(5) in Fig. 1) and the solution point 
(point (6)). Then Eq. (30-3) is subtracted from (30-l), Eq. (30-4) is subtracted 
from (30-2), and Eq. (31) is subtracted from the sum of (30-l) and (30-2). This 
yields three independent equations in which the cross derivatives at point (6) 
have been eliminated. These equations are 

W(6) - PUN/W - WI + Me) 45) 46) 
+ ~(1) 41) ~d6Wi(6) - UMW - WI 
- 2M6) - A3)lM6) - t(3)] + [P(6) c(6) d6) 
+ ~(3) c(3) ~,(6)lM6) - d3)llP(6) - t(3)] 
= SW) - $(3) - P(l) ~~(1) A(6) M6) %/%U> 
+ P(3) ~~(3) A(6) h(6) W%(3), 

2M6) --A2)lM) - @)I + [P(6) 46) 846) 
+ P(2) 42) /3d6)l[d6) - G?ll[t(6) - r(2)] 
- 2M6) - ~(4)lM6) - t(4)] + [P(6) c(6) P,(6) 
+ P(4) c(4) M6)lM6) - ui(4)llP(6) - t(4)] 
= #(2) - #(4) - p(2) ~~(2) ai(6) a,(6) &@x,(2) 

+ p(4) ~~(4) d6) d6) W%(4), 

(32) 

(33) 

2W) - ~(lM~(6) - W>l + [P(6) 46) 46> 
+ Al) 41) dW49 - ~~UMM9 - t(l)1 
+ W(6) - P(WW) - @)I + b(6) cWh(6) 
+ ~(2) 49 /3&>1b4i(6) - 4WW - WI 
- 2M6) - ~(5)llM6) - 01 
= #Cl) + $42) + $I61 - #(5) - ~(1) ~~(1) 846) A(6) h/a&l) 
- p(2) ~~(2) ai(6) a,(6) &@xj(2) 

+ ~(5) c2(5)h(6) a,(6) + A(6) M6)l Wan,. (34) 

The notation &@xj(k) denotes the value of the derivative at the point (k) 
(k = 1,2, 3,4, 5) in Fig. 1. Equations (32) through (34) form a set of three 
independent difference equations which will be used in place of Eq. (27). 

Writing Eqs. (22) and (24) in finite difference form yields 

2M6) - A5)l + b(6) ui(6) + p(5) ui(5)l[ui(6) - ui(5)l = 0 (35) 
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and 

2b(6) -p(5)] - b2(6) + a2(5)lb(6) - p(5)] = i+(6) + $(5)lP(6) - t(5)]. (36) 

Thus, Eqs. (32) through (36), along with the finite difference form of Eq. (25), form 
a complete set of 5 + n independent difference equations for the 5 + n unknowns 
U, v, w, p, p, and the n species concentrations, ci . 

V. UNIT PROCESSES 

The unit processes are divided into a predictor and a corrector. The initial-value 
surface is assumed to be a spacelike plane with x = const. The network, which is 
shown in Fig. 1, is an inverse scheme with new solution planes being located by 
the Courant-Friedrichs-Lewy (CFL) stability criterion [16]. 

In the predictor, solution points in the solution plane are determined by extending 
the streamlines forward from known data points in the initial-value plane using 
the following finite difference form of Eq. (19): 

k(6) -45)1/P(6) - t(5)] = h(6) + 4(5)1/2 (i= 1,2,3), (37) 

where ~~(6) is set equal to ~~(5). The four bicharacteristics are then extended back 
to intersect the initial-value plane. The points of intersection are computed from 
the following finite difference form of Eq. (28): 

2[x,(6) - xi(k)] = [4(6) + c(6) 46)cos B(k) 
+ c(6) f4(6) sin 0(k) + u&) + c(k) c~(6) cos B(k) 

+ c(k) 846) sin WW(6> - t(k)1 (i = 1, 2, 3), (38) 

where the index k denotes values at the base points (I), (2), (3), and (4) in Fig. 1, 
which correspond to values of O(k) equal to 0,7r/2, 7~, and 3~/2, respectively. The 
values of the properties and derivatives of the properties at points (1) through (5) 
are determined by interpolation using the following second-order bivariate inter- 
polating polynomial: 

Property = A + By + Cz + Dyz + Ey2 + Fz2, (39) 

where the coefficients are determined by a least-squares fit of nine data points, i.e., 
the point in question plus its eight nearest neighbors (see Fig. 1). Equation (39) 
is used to determine the properties U, v, w, p, p, a, and IJ only. The values of the 
properties at point (6) in Eq. (38) are set equal to the values at point (k) except for 
ai and j$ , which were selected to straddle the direction of the pressure gradient 
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at point (5) after Ransom [l]. Equations (30) through (36) are then solved for ui(6), 
p(6), and p(6), assuming the species concentrations remain constant and evaluating 
the coefficients at the initial-value points. The n species continuity equations are 
then solved for the new species concentrations. 

The boundary point scheme is the same as the interior point scheme except that 
Eq. (38) for k = 4 is replaced by the condition that point (6) must lie on a pre- 
scribed surface (i.e., the nozzle wall), and Eq. (33) is replaced by the flow tangency 
condition 

lii(6)ui(6) = 0 (9 

where Et, = (7i, , fir , 7iZ) is the unit outer normal to the boundary at point (6). 
The corrector uses the same finite difference equations as the predictor, except 

that the value of the properties at point (6) in the equation coefficients are those 
values computed by the predictor. The corrector then follows the same procedure 
as the predictor and is either applied once or iterated until a convergence criterion 
is satisfied for each new solution point. 

VI. SOLUTION OF THE SPECIES CONTINUITY EQUATION 

The solution of the species continuity equation in nonequilibrium, chemically 
reacting flows is known to cause severe numerical difficulties when the flow is near 
equilibrium. Many numerical methods have been proposed and several are presently 
being used to overcome these difficulties. Therefore, a numerical study comparing 
the proposed methods was conducted. This study, which is presented in detail in 
[2], compared twenty-four methods based on actual calculations. The object of 
this study was to determine the method with the best combination of efficiency, 
accuracy, simplicity, and stability. 

Based on the results of that study, the implicit method of Lomax and Bailey [17] 
was employed to solve the species continuity equation for flows near chemical 
equilibrium. When the flow is no longer near chemical equilibrium, the modified 
Euler method was employed because the slight increase in accuracy (if any) of the 
implicit scheme does not offset the increased computing times required by that 
scheme. 

The second-order accuracy finite difference equations for the method of Lomax 
and Bailey are [ 171 

ci(6) = ~(5) + h /f,(5) + W+(5)[p(6) - p(5)] + VW(5)[~(6) - T(5)] 

+ i Til%(5)kj(6) - c,(5)@ (i = l,..., n), (41) 
i=l 
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where h = t(6) - t(5), fi = q/p, and the numbers in parentheses refer to the 
mesh points shown in Fig. 1. The partial derivatives are analytically determined 
and are given in [2]. Equation (41) is a linear system of equations for the unknown 
ci . This system was solved using Gauss elimination. The finite difference equations 
for the modified Euler method are simple and are thus not shown. 

VII. OVERALL NUMERICAL ALGORITHM 

The overall numerical algorithm consists of the repetitive application of the 
boundary and interior point schemes, or unit processes, which generates the global 
solution of the original governing equations for a particular set of initial and 
boundary conditions. 

The initial data are specified on an initial-value surface which is a space-like 
plane perpendicular to the x coordinate direction, where x is usually the mean 
flow direction. The flow is assumed to be supersonic over the entire initial-value 
plane. The boundaries consist of planes of symmetry and the nozzle wall contour. 
The integration scheme follows the streamlines passing through the data points 
in the initial-value plane. The solution is generated on a series of parallel planes 
which are located by the CFL stability criterion. The final solution plane corre- 
sponds to the nozzle exit plane which, therefore, limits the possible nozzle contours 
to those having a constant x exit plane. After each solution surface is computed, 
the three thrust components, three moment components, and mass flow rate are 
calculated using trapezoidal rule integration. 

For existence and uniqueness of a genuine solution, the values of the 5 + 12 
dependent variables (i.e., U, ZI, W, p, p, and ci) prescribed on the initial-value plane 
(Cauchy data) must have at least continuous first derivatives. In general, the data 
are known only at a finite set of points in the initial-value plane and, therefore, 
continuous data are generated by interpolating the original finite set of data using 
cubic spline interpolating polynominals. The data thus produced are piecewise 
analytic and possess continuous second derivatives at the original data points. 
If known, experimental data can be employed for the initial-value plane. 

The scheme used for spacing the mesh points in the initial-value plane is that 
used by Ransom[l]. This sheme produces a uniform array of mesh points in the 
physical space for both circular and noncircular nozzle cross sections. The square 
logical array corresponding to the mesh points in the physical space has the 
properties that the neighbors of a mesh point in the logical array are approximately 
the neighbors in the physical space and the mesh points on the perimeter of the 
logical array are the boundary points in the physical space. 

The plane of symmetry and nozzle wall contour are time-like surfaces on which 
specific boundary conditions are applied. The plane of symmetry boundary 
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condition is applied using the reflection technique. Image points adjacent to a plane 
of symmetry are produced by reflection, therefore allowing the original interior 
point scheme to be used. Likewise, the original boundary point scheme is used at 
the intersection of a plane of symmetry and the nozzle wall contour. The nozzle 
wall contour cross sections are given by the general equation 

( YlYoY’ + wo)“” = 13 (42) 

where y,, and z, are the y and z coordinate intercepts on the x-y and x-z coordinate 
planes, respectively, and e, and e, are variable exponents. For e, = e2 = 2.0 and 
y0 = z,, , Eq. (42) defines a circular cross section. For e, = e2 = 2.0 and y,, # z, , 
Eq. (40) defines an elliptical cross section. For e, > 2.0 and e2 > 2.0, Eq. (42) 
defines a super-elliptical cross section. The exponents e, and e2 and the intercepts 
y0 and z,, are quadratic functions of x and may be different in all four quadrants. 
The nozzle wall boundary condition is that the flow must remain tangent to the 
nozzle wall at every point. 

The integration step size is regulated by the CFL stability criterion (16), which 
says that the convex hull of the difference scheme (i.e., the smallest convex set 
containing the nine data points) must always include the domain of dependence 
of the differential equations. 

In addition to the nonequilibrium, chemically reacting flow model discussed in 
Section II, two other thermochemical models were also considered. These models 
are 

(1) flow of a thermally and calorically perfect gas (constant y and R), 
(2) flow of a gas in which the thermochemical properties are input in 

tabular form. 

The last model may be used to solve flows in chemical equilibrium or flows with 
frozen chemical composition having variable specific heats. 

VIII. NUMERICAL STABILITY 

A stability analysis of the nonlinear finite difference equations for three- 
dimensional, steady, nonequilibrium, chemically reacting flow was not attempted. 
Instead, stability analyses of the method of characteristics scheme for isentropic 
flow and of the species continuity equation scheme were conducted separately. 
Stability of the combined scheme was then verified by numerical calculations. 

Stability of the species continuity equation scheme was treated in Section VI. 
The present scheme was found to be stable for all step sizes considered and only 
the accuracy was adversely affected by large step sizes. 
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The CFL stability criterion was found to be a necessary condition for stability 
of the characteristic scheme. The domain of dependence of the difference equations 
was considered to be the convex hull of the eight neighboring mesh points of 
point (5) in Fig. 1. 

While the CFL stability criterion was found to be necessary for stability, 
Ransom [l] showed that the CFL criterion was not sufficient. In fact, the scheme 
was found to be only marginally stable when actual streamline data were used at 
point (5) in Fig. 1. A linear von Neumann stability analysis indicated that inter- 
polated streamline data should be used at point (5) instead of the actual data. With 
this slight modification, the scheme was found to be stable. Since this modification 
removed the instability, no additional stability analyses were investigated. 

In the overall scheme, interpolated streamline data (i.e., U, V, w, p, p, a, and +) 
were used at point (5) in Fig. 1, and the resulting scheme was shown to be stable by 
actual numerical calculations of one-, two, and three-dimensional flows. 

IX. ACCURACY STUDIES 

Accuracy studies were conducted to check the theoretical development for 
correctness, to check the computer program for errors, and to determine the 
accuracy that could be expected from the method. By accuracy one usually means 
either absolute accuracy or the order of accuracy of the numerical method. These 
two are related since methods with higher orders of accuracy will, in general, have 
greater absolute accuracy for sufficiently small step sizes. 

The problem here was how to determine the accuracy of the method since exact 
solutions cannot be found for general flows. One technique, therefore, is to com- 
pute simple flows where the exact solutions are known. Another technique is to 
compute general flows and compare the solutions with those obtained by an 
accepted or time proven method. A third technique is to compute general flows 
for successively smaller step sizes to see if the method converges to a stable solution. 
The first technique was implemented by computing the isentropic spherical source 
flow of a thermally and calorically perfect gas. The second technique was utilized 
by computing nonequilibrium, chemically reacting flow in an axisymmetric nozzle 
and comparing the solution to that of the ICRPG, Two-Dimensional Kinetic 
Reference Program (TDK) [18]. The third technique was checked by solving non- 
equilibrium, chemically reacting flow in an elliptic cross-section nozzle while 
successively halving the step size twice. 

The thermally and calorically perfect gas thermochemical model was used to 
compute isentropic spherical source flows in a 15” conical nozzle. The results 
computed compared very well with the exact source flow results, and are, therefore 
not shown here. 
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Axisymmetric accuracy studies were conducted with the Hz/F2 propellant system 
at a chamber pressure of 100 psia and a mixture ratio of 10 in a 15” conical nozzle. 
The nozzle inlet had a 1 in. radius. The ICRPG Two-Dimensional Kinetic Reference 
Program (TDK) was used to compute the solution from the chamber to the nozzle 
exit lip. This solution was then interpolated at a point just downstream of the sonic 
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FIG. 2. Comparison of the two- and three-dimensional methods for nonequilibrium flow in 
an axisymmetric nozzle. 
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FIG. 3. Comparison of the two- and three-dimensional methods for nonequilibrium flow, 
initially in equilibrium, in an axisymmetric nozzle. 
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line to determine an initial-value plane for the three-dimensional method. Using 
this initial-value plane, the three-dimensional method computed the solution in the 
supersonic portion of the nozzle up to the exit plane. Temperature vs axial distance 
computed by the two methods for a typical wall streamline is shown in Fig. 2. 
Frozen and equilibrium temperature profiles computed by the ICRPG, One- 
Dimensional Equilibrium Program (ODE) [I91 are included for reference. The 
nozzle inlet is located at x = 0 and the vertical slash on the three-dimensional 
solution curve denotes the axial location of the initial-value plane. Both methods 
used 11 mesh points on the positive y axis (i.e., 121 mesh points in the positive 
y, z quadrant for the three-dimensional method). The TDK and three-dimensional 
solutions appear to compare very well considering the large differences between the 
frozen and equilibrium, one-dimensional solutions. 

As an additional check, a nonequilibrium expansion using the same 15” conical 
nozzle was computed from an equilibrium initial-value plane. A supersonic solution 
point of the ODE equilibrium solution shown in Fig. 2 was used as a uniform flow 
initial-value plane. Starting with this initial-value plane, the following four flow 
models were computed: 

(1) three-dimensional, equilibrium flow using tabular property data from 
the ODE solution, 

(2) axisymmetric, nonequilibrium flow (TDK), 
(3) three-dimensional, nonequilibrium flow, and 

(4) three-dimensional, constant y and R flow. 
The teperature profiles of a typical wall streamline for the four solutions are shown 
in Fig. 3. The nozzle inlet was located at x = 0 and 11 mesh points were used. 
Again, the two nonequilibrium solutions have good agreement. 

The results of these studies demonstrated the importance of the initial data for 
the supersonic calculations. For example, when a supersonic solution point from 
the ODE solution assuming frozen chemical composition was used as a uniform 
initial-value plane, the flow experienced a compression just off the initial-value 
plane resulting in a 10% error in mass flow at the nozzle exit plane. This com- 
pression was severe enough that the TDK program was unable to compute the first 
mesh point off the initial-value line. 

Three-dimensional results were obtained for nonequilibrium flow in an elliptical 
nozzle for 4, 7, and 13 mesh points on the positive y or z axis (i.e., 16, 49, and 169 
mesh points in the positive y, z quadrant). All dependent variables of the 
solutions converged to a stable value. The ratios of the differences in the flow 
variables between the 4 and 7 mesh point solutions and the 7 and 13 mesh point 
solutions were always between 3.5 and 4.0, thus indicating the second-order 
accuracy of the method. 
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During the course of these studies the effect upon accuracy of corrector iteration 
was considered. For some flows with small gradients, one correction was sufficient. 
On the other hand, flows with moderate or large gradients required two corrections. 
In none of the flows considered were additional corrections more desirable than 
decreasing the mesh spacing. 

X. THREE-DIMENSIONAL FLOW RESULTS 

In this section, nonequilibrium, chemically reacting flow solutions for elliptical 
and super-elliptical nozzles are presented. Since at this time no other methods to 
solve nonequilibrium, chemically reacting flow in nozzles have been programmed, 
it is not possible to make any comparisons with existing three-dimensional results. 
The computing times specified are for a CDC 6500 computer. 

The first case was an elliptical nozzle. The cross-section of this nozzle is defined 
by Eq. (42) where e, = e, = 2 and the y and z intercepts, y0 and z,, , are described 
by a circular arc in the throat region which is joined tangentially to a parabola 
such that the contour is initially circular at the throat and elliptical beyond. The 
positive y-z quadrant of this nozzle is plotted isometrically in Fig. 4. The z intercept 
z,, , was held tied, while the y intercept y0 , was allowed to vary. 

A uniform flow initial-value plane, which corresponds to a supersonic solution 
point of the ODE equilibrium solution shown in Fig. 2, was specified. Starting 

FIG. 4. Elliptical nozzle. 
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with this initial-value plane, flows with the following three thermochemical models 
were computed: 

(1) three-dimensional, equilibrium flow using tabular property data from 
the ODE solution, 

(2) three-dimensional, nonequilibrium flow, and 
(3) three-dimensional, constant y and R flow. 
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FIG. 5. Wall pressures for elliptical nozzle. 
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FIG. 6. Temperature profiles for flow in an elliptical nozzle. 
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FIG. 7. Species concentration profiles for flow in an elliptical nozzle. 

FIG. 8. Super-elliptical nozzle. 
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FIG. 9. Wall pressures for super-elliptical nozzle. 
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FIG. 10. Temperature profiles for flow in a superelliptical nozzle. 

The nozzle cross sections and polar wall pressure plots for the nonequilibrium 
solution are shown in Fig. 5. Only seven points on the positive y or z axis (i.e., 
49 points in the positive y-z quadrant) were used. The polar pressure plot is 
constructed such that the pressure is the magnitude of the radius vector to each 
point on the curves which correspond to the nozzle cross-section contours and the 
polar angle corresponds to the polar angle of the wall point in the physical plane. 
From Fig. 5, the pronounced three-dimensional character of the flow is apparent 
even though the nozzle contour curvature is rather gentle. Temperature profiles of 
a typical wall streamline for all three thermochemical models are shown in Fig. 6. 
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FIG. 11. Species concentration profiles for flow in a super-elliptical nozzle. 

Species concentration profiles of a typical wall streamline are shown in Fig. 7. 
The temperature and species concentration profiles were computed using 11 points 
on the positive y or z axis (i.e., 121 points in the positive y-z quadrant). From 
Figs. 6 and 7, it is apparent that relatively small changes in chemical composition 
can affect the flow field significantly. For the nonequilibrium flow case, 302 seconds 
of computer time were required for the 49 streamline case and 115 1 seconds were 
required for the 121 streamline case. 

The other three-dimensional case considered was a super-elliptical nozzle. The 
cross section of this nozzle is defined by Eq. (42) where e, = e2 = 2 initially at the 
throat and vary as a quadratic function of x until e, = e, = 10 at the nozzle exit. 
The y and z axis intercepts, y0 and z, , are again described by a circular arc in the 
throat region which is joined tangentially to a parabola such that the contour is 
initially circular at the throat and super-elliptical beyond. The positive y-z quadrant 
of this nozzle is plotted isometrically in Fig. 8 The y and z axis intercepts, y,, and z,, , 
both were allowed to vary. 

The same initial-value plane and three thermochemical models used in the 
elliptical nozzle were considered here. The nozzle cross-sections and polar wall 
pressure plots for the nonequilibrium solution are shown in Fig. 9. Again, the 
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three-dimensional character of the flow is apparent. Temperature proties of a 
typical wall streamline for all three thermochemical models are shown in Fig. 10. 
Species concentration profiles of a typical wall streamline are shown in Fig. 11. 
For the nonequilibrium case, 220 seconds of computer time were required for the 
49 streamline case and 840 seconds were required for the 121 streamline case. 

XI. CONCLUSIONS 

A numerical technique and production type computer program have been 
developed and verified for the analysis of nonequilibrium, chemically reacting 
flows in nozzles. The scheme was shown to have second-order accuracy, and 
comparisons with exact solutions and axisymmetric numerical solutions showed 
a high absolute accuracy. The method should be equally applicable for diffusers 
and external flows. Although shock waves were not included, the overall algorithm 
is constructed in such a manner that the inclusion of shock waves is feasible. 
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